Assignment 5.

This homework is due *Thursday*, October 8.

There are total 32 points in this assignment. 27 points is considered 100%. If you go over 27 points, you will get over 100% (up to 115%) for this homework and it will count towards your course grade.

Collaboration is welcome. If you do collaborate, make sure to write/type your own paper and *credit your collaborators*. Your solutions should contain full proofs. Bare answers will not earn you much.

This assignment covers sections 3.1–3.2 in Bartle–Sherbert.

(1) REMINDER. Recall definition of a sequence in \mathbb{R} converging to an $x \in \mathbb{R}$: Let $X = (x_n)$ be a sequence in \mathbb{R} , let $x \in \mathbb{R}$. $X = (x_n)$ converges to x if $\forall \varepsilon > 0 \ \exists K \in \mathbb{N} \ \forall n > K, |x - x_n| < \varepsilon$.

Below you can find (erroneous!) "definitions" of a sequence converging to x. In each case describe, exactly which sequences are "converging to x" according to that "definition".

- (a) [2pt] Let X = (x_n) be a sequence in ℝ, let x ∈ ℝ. X = (x_n) "converges to x" if ∀ε > 0 ∀K ∈ ℕ ∀n > K, |x x_n| < ε.
 (If you are confused at this point, think of the problem this way: suppose for some sequence (x_n) and a number x ∈ ℝ you know that statement (a) is true. What can you say about about (x_n)?)
- (b) [2pt] Let $X = (x_n)$ be a sequence in \mathbb{R} , let $x \in \mathbb{R}$. $X = (x_n)$ "converges to x" if $\exists K \in \mathbb{N} \forall \varepsilon > 0 \forall n > K, |x x_n| < \varepsilon$.
- (c) [2pt] Let $X = (x_n)$ be a sequence in \mathbb{R} , let $x \in \mathbb{R}$. $X = (x_n)$ converges to x if $\exists \varepsilon > 0 \ \exists K \in \mathbb{N} \ \forall n > K, |x x_n| < \varepsilon$.
- (d) [3pt] Let $X = (x_n)$ be a sequence in \mathbb{R} , let $x \in \mathbb{R}$. $X = (x_n)$ "converges to x" if $\forall \varepsilon > 0 \ \exists K \in \mathbb{N} \ \exists n > K, |x x_n| < \varepsilon$.
- (2) [3pt] (Exercise 3.2.7) If (b_n) is a bounded sequence and $\lim(a_n) = 0$, show that $\lim(a_nb_n) = 0$. Explain why Theorem 3.2.3 (Arithmetic properties of limit, " $\lim XY = \lim X \cdot \lim Y$ ") cannot be used.
- (3) (a) [2pt] (Theorem 3.2.3) Let $X = (x_n)$ and $Y = (y_n)$ be sequences in \mathbb{R} converging to x and y, respectively. Prove that X Y converges to x y.
 - (b) [1pt] (Exercise 3.2.3) Show that if X and Y are sequences in \mathbb{R} such that X and X + Y converge, then Y converges.
 - (c) [2pt] (Exercise 3.2.2b) Give an example of two sequences X, Y in \mathbb{R} such that XY converges, while X and Y do not.

— see next page —

- (4) [4pt] Determine the following limits (or establish they do not exist):
 - (a) $\lim_{n \to \infty} \frac{2n^2 1}{1000n + 100000}$ (*Hint:* show that the sequence is not bounded),
 - (b) $\lim_{n \to \infty} \frac{2\sqrt{n^2 + 1} 10}{1000n + 100000}$,
 - (c) $\lim_{n \to \infty} \frac{2n^2 1}{1000\sqrt[5]{n^{11} + 12} 100000}$.
- (5) Find limits using Squeeze Theorem:
 (a) [2pt] lim_{n→∞} n²+2015n(sin n+3 cos n⁷)-1/(2n²-cos(3n²+1)),
 (b) [2pt] lim_{n→∞} √n² + cos(2014n + 1) √n² sin(n³ 1). (*Hint:* Once you get rid of sin and cos, multiply and divide by the conjugate, $\sqrt{-} + \sqrt{-}$.)
- (6) (a) [3pt] (Example 3.1.11d Prove that $n^{1/n} \to 1 \ (n \to \infty)$.
 - (b) [2pt] (3.2.14a) Use Squeeze theorem to find limit of the sequence $(n^{1/n^2}).$
- (7) [2pt] (3.2.8) Find a mistake in the following argument. "Find $\lim_{n \to \infty} (1 + \frac{1}{n})^n$ as shown below:

$$\lim_{n \to \infty} (1 + \frac{1}{n})^n = \lim_{n \to \infty} (1 + \frac{1}{n}) \cdot (1 + \frac{1}{n}) \cdots (1 + \frac{1}{n})$$
$$= \lim_{n \to \infty} (1 + \frac{1}{n}) \cdot \lim_{n \to \infty} (1 + \frac{1}{n}) \cdots \lim_{n \to \infty} (1 + \frac{1}{n})$$
$$= \left(\lim_{n \to \infty} (1 + \frac{1}{n})\right)^n = 1^n = 1.$$

Therefore, $\lim_{n\to\infty} (1+\frac{1}{n})^n = 1$." COMMENT. To reiterate, the argument above is erroneous and the obtained value of the limit is wrong, too.